
Social Science & Medicine xxx (xxxx) xxx

Please cite this article as: Noli Brazil, Social Science & Medicine, https://doi.org/10.1016/j.socscimed.2021.113772

Available online 16 February 2021
0277-9536/© 2021 Elsevier Ltd. All rights reserved.

The multidimensional clustering of health and its ecological risk factors 

Noli Brazil 
University of California, Davis, Department of Human Ecology, One Shields Ave, Davis, CA, 95616, USA   

A R T I C L E  I N F O   

Keywords: 
Spatial analysis 
Social determinants of health 
Social networks 
Migration 
Syndemic 

A B S T R A C T   

A diverse set of research has examined the ways in which population-level health and its ecological risk factors 
are embedded within self-reinforcing structures. Syndemic theory, for example, focuses on the co-occurrence of 
multiple diseases, whereas the spatial diffusion literature highlights the concentration of poor health among 
communities sharing geographic boundaries. This study combines these related but disciplinarily-isolated per
spectives to examine the clustering of population-level health and its determinants across four dimensions: co- 
occurrence, spatial, temporal, and social network. Using data on U.S. county-level health outcomes and health 
factors from the Robert Wood Johnson Foundation’s County Health Rankings, this study estimates associations 
between health outcomes within communities and the co-occurrence of community-level factors theorized to 
influence ecological health. Not only do health outcomes and their ecological risk factors cluster within counties, 
but also between geographically adjacent counties and counties connected via migration network pathways. 
Moreover, the self-reinforcing structures uncovered across the co-occurrence, spatial and network dimensions 
persist over time, and this clustering has consequences on county health and well-being. Rather than adopting 
the perspective that either health and its community-level factors should be broadly targeted and detached from 
local context or communities are different, have unique needs and thus should be treated in isolation, the 
approach advanced in this study identifies shared vulnerabilities in a way that allows for the development of 
knowledge networks between communities dealing with similar issues.   

1. Introduction 

In 2015, for the first time in more than two decades, life expectancy 
in the United States declined (Xu et al., 2016). This decline continued 
until 2018 when life expectancy only slightly increased. The decline in 
life expectancy was unequally distributed across the country as counties 
with the highest life expectancies have continued to increase life ex
pectancy, while those with the lowest have plateaued (Dwyer-Lindgren 
et al., 2017; Vierboom et al., 2019). There is growing recognition in 
research, policy and practice that adequately addressing this rising 
health inequality will require approaches that move beyond standard 
interventions that focus on a single health outcome and household or 
individual-level determinants such as medical care access and quality 
(Zajacova and Montez, 2017). An increasingly popular approach is to 
target multiple co-occurring health conditions in a single intervention. 
This approach draws from syndemic theory, which highlights how 
synergistic interactions among psychosocial and biological conditions 
underlie patterns of disease clustering (Singer, 1996; Tsai, 2018; Tsai 
and Venkataramani, 2016). It is not a single disease or multiple diseases 
acting independently of one another that is solely contributing to 

stagnating or declining life expectancies in certain communities, but the 
co-occurrence or synergistic interaction of several diseases (Meader 
et al., 2016; Tsai, 2018). 

Syndemic theory points to large-scale social, political, economic, and 
ecological factors giving rise to disease co-occurrence and clustering 
(Singer et al., 2017). The perspective that contextual characteristics 
influence health outcomes is not new. For example, the social de
terminants of health (SDH) framework argues that health inequalities 
cannot be attributed to differences in individual characteristics alone; 
the upstream contextual determinants that reflect the economic and 
social resources and opportunities influencing residents’ access to 
health-promoting living and healthy choices strongly shape ecological 
health and well-being (Marmot, 2005; Bambra et al., 2010). Other 
ecological factors, such as access to clinical care, community-level 
health behaviors, and the physical environment, also play a role in 
shaping health above and beyond individual characteristics (Hood et al., 
2016). The SDH framework and similar perspectives coupled with syn
demic theory predict that ecological factors have both independent and 
interactive effects on health. That is, both health and its ecological risk 
factors co-occur, and this co-occurrence amplifies the disease burden 
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experienced by disadvantaged communities. 
The co-occurrence of risk factors and health outcomes is only one 

type of clustering. Drawing from a wide variety of social science per
spectives, including syndemic theory, the SDH framework, and social 
network and spatial perspectives, I argue that community health and its 
ecological risk factors are embedded within several self-reinforcing 
structures. Without accounting for clustering across these multiple 
structures, we are underestimating the health burden experienced in 
certain areas of the country. Using county-level demographic data from 
the American Community Survey (ACS) and health outcomes and their 
ecological risk factors from the 2015 and 2018 Robert Wood Johnson 
Foundation’s County Health Rankings (CHR), I examine the magnitude 
and extent of clustering in health outcomes and ecological risk factors 
across four dimensions: co-occurrence, spatial, temporal, and social 
network. The study’s objective is to demonstrate that community-level 
health and its ecological risk factors are clustered across these di
mensions, and thus not accounting for these various forms of embedd
edness underestimates a community’s disease burden. 

1.1. Conceptual model 

Co-occurrence and spatial, temporal, and social network clustering 
are represented, without reference to specific contextual factors, 
geographic context and health outcomes, in Fig. 1. The gray polygons 
represent geographic areas such as counties, with arrows depicting as
sociations within and between geographic areas. Arrows colored in 
black represent the pathways captured by each dimension of clustering. 
Fig. 1a depicts variable clustering or co-occurrence, which is the 
concomitant association between multiple health outcomes and its risk 
factors in a given place and time. Co-occurrence research has found 
evidence of a synergistic effect of health conditions; this research, 
however, has largely focused on studying individuals rather than pop
ulations or communities and on the co-occurrence of health conditions 

but not their risk factors, and has neglected the spatial and network 
dimensions of co-occurrence. (Tsai, 2018; Tsai et al., 2017). 

Fig. 1b depicts temporal clustering, which measures the persistence 
of health outcomes and health risk factors across time. Significant 
attention has been paid towards the transmission of individual health 
and its risk factors within and between generations (Wickrama, 1999) 
and the enduring effects of contextual risk factors, such as neighborhood 
poverty and violence, on individual health across the life course (Brazil 
and Clark, 2017; Sharkey, 2008). The current study examines how ad
vantages and disadvantages in ecological health and its determinants 
persist over time. This dimension of clustering directs attention to the 
trajectory of population health. Appropriate interventions in counties 
exhibiting poor health over a longer period of time will differ from in
terventions in counties experiencing either poor but improving health or 
good but declining health. 

Fig. 1c depicts spatial clustering, which measures the concentration 
of health outcomes and their ecological risk factors within a geograph
ically bounded group of communities. The spatial clustering literature 
has demonstrated that health outcomes in areas as small as census tracts 
and as large as counties are associated with health outcomes in 
geographically adjacent areas. Studies have demonstrated that a variety 
of health outcomes follow this geographic spillover process, including 
mortality rates (Brazil 2017; Sparks and Sparks, 2010; Yang et al., 
2015), diabetes (Myers et al., 2017), mental health (Gruebner et al., 
2015; Yang 2019), heart disease (Kramer et al., 2017), and composite 
indices of overall health and well-being (Tabb et al., 2018). Not only can 
health outcomes diffuse across geographic boundaries, but also their 
ecological social and demographic determinants. For example, Yang 
et al. (2015) found that social capital in a specific county is negatively 
associated with the mortality rates in that county and its neighboring 
counties. High spatial clustering suggests that health outcomes and its 
determinants diffuse or spill over to geographically proximate places 
(Tabb et al., 2018; Yang et al., 2015). Consequently, an area of poor 

Fig. 1. Conceptual model of the clustering of health (H) and its ecological risk factors (HF) across co-occurring, temporal, spatial and network dimensions.  
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health becomes embedded within a larger geographic cluster of poor 
health communities with self-reinforcing spatial structures. In order to 
dismantle these structures, interventions should not only target a com
munity’s health outcomes and their determinants, but also the outcomes 
and risk factors of its geographic neighbors 

The spatial adjacency literature treats diffusion as a geographically 
bounded process, similar to an infection spreading from a localized point 
source. Here, geographic proximity is the primary determinant of the 
ties that foster the diffusion of health and its determinants. Strong 
empirical evidence indicates that the diffusion of health is spatially 
structured, even at varying levels of geographic aggregation; thus, this 
approach has long been considered an adequate explanatory model 
(Matthews and Yang, 2013). But, a separate perspective, social network 
theory, predicts that diffusion is not strictly a spatially bounded process 
(Papachristos and Bastomski, 2018). Fig. 1d depicts network clustering, 
which measures the synergistic interaction of health and 
community-level factors between communities connected via economic, 
political and demographic pathways that are not completely governed 
by geographic proximity. An established literature has demonstrated the 
spread of health conditions and their risk factors across a social network 
defined not simply by direct kin ties, but also by ties extending to several 
degrees of separation (Christakis and Fowler, 2007; Umberson and 
Montez, 2010; Papachristos and Bastomski, 2018). What counts is a 
person’s placement in social space, not geographical space. Only 
recently have social scientists extended social network theory to connect 
ecological units, with the majority of these applications found in crim
inology (Tita and Radil, 2010; Bastomski et al., 2017; Graif et al., 2019). 
The present study examines social network clustering via a particular 
pathway connecting communities both near and far: migration flows. 

The justification for examining migration flows stems in part from 
the observation that health outcomes and health factors are not airborne 
phenomena that disperse across boundaries. Rather, people move, tak
ing their health and behaviors with them. From a networked perspec
tive, the choice to move to a certain county is shaped not just by 
individual happenstance or spatial proximity, but also by meso-level 
institutional ties or meaning frameworks (Fawcett 1989), as well as 
social distance between areas. Individual residential mobility choices 
are also influenced by larger structures that are shaped by meso-level 
processes such as segregation, gentrification, or housing policies 
(Clark and Brazil, 2019; Clark and Maas, 2015). Such a proposition 
follows work on how migration creates or disrupts networks between 
local communities within a city (Sampson 2012). It is also motivated by 
the growing literature on migration network theories that explain flows 
between communities from different countries via the establishment of 
social and institutional ties (Danchev and Porter 2018; DeWaard and Ha, 
2019; Leal et al., 2019). According to these theories, migration from an 
origin community to a foreign destination community is established by 
broader forces making those flows possible in the first place. As these 
flows continue, origin and destination become socially and economi
cally linked, especially if counterflows exist and migrants maintain ties 
to origin communities. The existence of global interconnectedness and 
mutual migrant streams is likely to generate “multilateral migration 
structures that are irreducible to preexistent geographic boundaries or 
independent migration exchanges” between pairs of communities 
(Danchev and Porter 2018: 7). These sorts of interactions give the 
network its form and feed back into the ways it affects both communities 
and individuals. 

The overarching theoretical position of this study is that a complete 
understanding of a population’s disease burden needs to incorporate the 
clustering of health and its ecological risk factors across multiple di
mensions. Although several research domains have articulated some of 
these dimensions, they often do not speak to one another despite strong 
similarities in their underlying empirical and theoretical underpinnings. 
Consequently, we are left with an incomplete picture of health disad
vantage. This study brings together these interrelated research domains 
by testing for evidence of clustering across the multiple pathways 

through which ecological health and its ecological factors are con
nected. The study’s primary aim is to demonstrate that community-level 
health is dependent on multiple forms of embeddedness either not 
previously accounted for or separately examined by the current health 
literature. 

2. Data and methods 

2.1. Data 

In selecting health outcomes and their ecological risk factors, I 
adopted CHR’s framework, a widely accepted model given its compre
hensiveness, reliance on publicly available data, and its theoretical 
grounding via a rigorous review of the population health literature 
(Remington et al., 2015). The model describes a holistic view of popu
lation health, highlighting multiple ecological factors including SDH 
and their relative contributions to length of life and quality of life. The 
CHR model identifies 13 health risk factors organized under four broad 
categories: Health behaviors, which captures tobacco use, diet and ex
ercise, alcohol and drug use, and sexual activity; Clinical care, which 
captures access to and quality of health care; Social and economic fac
tors, which includes education, employment, income, family and social 
support, and community safety; and physical environment, which in
cludes air and water quality and housing and transit. Each sub-domain is 
represented by a range of measures, which I standardized and averaged 
to obtain 13 sub-domain indices. 

The CHR uses two health outcomes, length of life, measured by the 
potential life lost before age 75 per 100,000 population, and quality of 
life, measured by the percentage of adults reporting fair or poor health, 
average number of physically unhealthy days reported in the past 30 
days, average number of mentally unhealthy days reported in the past 
30 days, and percentage of live births with low birthweight. I stan
dardized these variables and took the average to obtain an overall health 
index. Because syndemic theory centers on the notion that multiple 
adverse conditions interact synergistically, I also examined other health 
outcomes, specifically diabetes prevalence (percentage of adults aged 20 
and above with diagnosed diabetes), one of the leading non- 
communicable diseases in years of life lost and disability adjusted life 
years in the United States and a disease typically examined by syndemic 
research because of its high and increasing prevalence (Menke et al., 
2015) and strong co-occurrence with other diseases (Mendenhall, 2016), 
and premature age-adjusted mortality (number of deaths among resi
dents under age 75 per 100,000 population), which is used as a cumu
lative measure of health. 

I analyzed 2018 CHR health data for counties in the contiguous 
United States (N = 3108), with measures reflecting the most current 
year that data are available. I used data from the 2015 CHR to capture 
past ecological characteristics. The 2015 CHR data are generally 
measured 2–5 years prior to the 2018 CHR values, with some minimal 
overlap. Several variables are estimated from state-level data from the 
Behavioral Risk Factor Surveillance System using Bayesian multilevel 
modeling techniques Barker et al. (2013). The years and sources of data 
for each variable are listed in the Appendix Table S1. Descriptive sta
tistics for each variable are provided in Appendix Table S2. 

2.2. Statistical analysis 

In this study, I used descriptive correlations and spatial and network 
methods to measure clustering across the four dimensions and model the 
association between clustering and community health and well-being. I 
did not attempt to measure causal pathways; instead, I focused on 
descriptively establishing baseline levels of clustering and establishing 
their association with health outcomes. I measured co-occurrence two 
ways. First, I calculated Pearson correlation coefficients of health out
comes and their determinants. Next, I performed an area classification, 
which is a cluster analysis procedure that classifies areas into groups on 
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the basis of the similarity of characteristics of selected features within 
them. Specifically, I conducted a geodemographic analysis, which is 
used as a means of multivariate data reduction to classify people ac
cording to where they live (Singleton and Spielman, 2014). Geodemo
graphic analysis is a clustering procedure that organizes each area (often 
specified at a small geographic scale) into groups based upon the overall 
similarities concealing within those multivariate attributes which they 
share. In addition to CHR’s 13 sub-domains, I included in the geo
demographic analysis demographic variables not included in CHR’s 
framework that both capture important geographic variation in the 
demographic profiles of counties and may help explain county-level 
variation in health conditions (Delmelle, 2019; Wallace et al., 2019). 
These variables are educational attainment (percent without a high 
school degree and percent with a college degree), race/ethnicity 
(percent American Indian, percent Asian, percent white, percent black, 
and percent Hispanic), age composition (percent below 18 years old, 
percent between 25 and 34 years old, and percent 65 years old and over) 
and percent rural. The demographic variables were downloaded from 
the 2011–2015 ACS. The age groups chosen represent distinct periods in 
the life course (childhood and adolescence, young adulthood and senior 
and older ages) that are associated with different health conditions, risk 
factors and lifestyles that help differentiate community types such as 
retirement communities catered to seniors and urban amenity-rich 
communities catered to young professionals (Delmelle, 2019; Grubesic 
et al., 2014). Racial/ethnic composition was included because of the 
strong degree of racial and ethnic residential concentration in specific 
parts of the country, such as Native American communities in the West 
and Southwest (Norris et al., 2012) and traditional Hispanic and Asian 
destinations in the West, Southwest, Sun Belt and the East (Lichter and 
Johnson, 2009). Moreover, differentiating between community types by 
their health risk factors must consider the interaction between race/
ethnicity and levels of risk. For example, communities of black and 
Hispanic populations tend to be more disadvantaged than those of 
comparable white populations, and thus typically have lower access to 
clinical care and poorer housing, transit, and environmental quality 
(Williams and Sternthal, 2010). However, poor health risk factors also 
exist in disadvantaged white communities, such as those in the rural 
South (Fenelon, 2013), and historically disinvested Native American 
communities (Barnes et al., 2010). Similarly, minority communities are 
not homogenously high-risk, but some have positive health factors, such 
as those documented in ethnic enclaves (Markides and Coreil, 1986; 
Tam, 2019). 

I used hierarchical clustering with Euclidean distance to measure 
similarity and Ward’s minimum variance method to minimize within- 
group differences and maximize between-group differences. Rather 
than relying on one metric to determine the optimal number of k clus
ters, I used the complete set of evaluation metrics provided by the R 
package NbClust (Charrad et al., 2014). The package provides 30 
indices, including metrics such as within and between sum of squares 
and Gap statistics. These indices combine information about intracluster 
compactness and intercluster isolation, as well as other factors, such as 
geometric or statistical properties of the data, and dissimilarity and 
similarity measures, with the aim of finding the k that best separates 
observations into distinct classes. The procedure provides the values of k 
by the number of indices indicating their optimality. The optimal k 
ranges from 6 to 10, with no one value representing the clear majority, 
and thus I used the median number of this range k = 8. 

To measure temporal clustering, I examined Pearson correlation 
coefficients of health outcomes and their ecological risk factors across 
two time points. To measure spatial clustering, I examined the Global 
Moran’s I, the spatial equivalent to the Pearson correlation, for each 
health outcome and health factors. The Moran’s I is based on an n x n 
weights matrix Wg that defines geographic neighbors, in this case Queen 
contiguity, whereby each matrix cell contains a 1 if counties in row j and 
column k share a border or vertex (point) and 0 otherwise. The Moran’s I 
is a standard measure of spatial autocorrelation with values ranging 

from − 1 to 1. A Moran’s I equal to 0 indicates a random spatial pattern 
with no spatial autocorrelation. Positive values suggest spatially clus
tered patterns in adjacent areas, whereas negative values indicate that 
samples reveal very different values from the neighboring ones. 

I also used Moran’s I to measure migration network clustering. 
Moran’s I is a valid test of network dependence (Lee and Ogburn, 2020) 
and has been used as a measure of clustering in applications combining 
network and spatial perspectives (Bastomski et al., 2017; Papachristos 
and Bastomski, 2018). Other measures of network dependence, segre
gation or homophily have been proposed, but are for categorical vari
ables based on group or class affiliation such as race/ethnicity 
(Bojanowski and Corten, 2014). Moreover, measuring Moran’s I for both 
spatial and network allows for a standardized comparison of clustering 
across models. The weights in the migration network matrix Wm are 
defined by the number of migrants moving from county to county. The 
rows represent the destination or receiving counties and the columns 
represent the origin or sending counties. I used U.S. Census 
County-to-County Migration Flows data to measure migration flows for 
every county pair in the contiguous United States. Migration flows are 
estimated from the 2011–2015 American Community Survey (ACS) 
5-year estimates. Migration flow counts are period estimates that mea
sure where people lived when surveyed and where they lived 1 year 
prior. I row-standardized both spatial and network based matrices such 
that the sum of values across a row equals to 1. The value in cell (j, k) in 
the row-standardized weights matrix Wm represents the proportion of 
individuals migrating to county j (row) that originated from county k 
(column). 

Because propinquity confounds network connectivity, I also con
structed a weights matrix Wgm that accounts for both migrant and 
geographic connectivity. Rather than the absolute number of individuals 
migrating from county i to county j as captured in the weights matrix 
Wm, I used the number of migrants weighted by the inverse distance 
between the two counties, where distance is measured by Euclidean 
distance between county centroids. This modifies Wm by decreasing the 
influence of counties that are farther away. Similar to Wm and Wg, I row 
standardized Wgm. 

Having established the levels of clustering at each dimension, 
regression models estimating the association between a county’s health 
and the health and ecological risk factors of its temporal, spatial and 
migration network neighbors were run. I included all 13 CHR sub
domains in the models in order to preserve the framework that guided 
the selection of variables in the clustering analysis. Multicollinearity was 
not present as variance inflation factors from ordinary least squares 
(OLS) regressions were below standard acceptable levels (i.e. below 5). 
To estimate the influence of temporal clustering, I estimated an OLS 
regression of the following form 

Yit = α + βXit + ρYit− n + γXit− n + θCit + εit  

where Yit is health outcome for county i at time t, Xit is the set of 
ecological health risk factors measured at time t, Yit− n is health outcome 
measured at time t-n, Xit− n is the set of ecological health factors 
measured at time t-n, Cit is a set of control variables (% Hispanic, % 
rural, log population size, and in- and out-migration rates), and εit is a 
random error term. Health and ecological factors measured at time t-n is 
defined as the temporal lags (the association between current health and 
health and its risk factors from a prior period). 

To examine the association between health and spatial and network 
clustering, Spatial Durbin regression models of the following form were 
estimated using 2018 CHR data (Anselin, 1988) 

Yi = α + βXi + ρWY + γWXi + θCi + εi  

where Yi is the health outcome for county i, Xi is the set of ecological 
health factors, W is the weights matrix, Wg, Wm or Wgm, Ci is a set of 
control variables, and εi is a random error term. The coefficient ρ is the 
health lag effect, which estimates the association between a county’s 
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health and the average health in that county’s spatial- or migration- 
connected counties. The coefficients β and γ represent the direct and 
indirect effects of Xi (LeSage and Pace, 2009). The direct effect refers to 
the association between changes in covariates for a given county and 
changes in the health of that same county. The indirect or ecological risk 
lag effect refers to the association between a county’s health and the 
average ecological risk characteristics in that county’s geographically 
adjacent (spatial) or migration sending (network) network. All analyses 
were conducted in R using the packages spdep and spatialreg. All models 
were estimated using maximum likelihood. All maps were constructed 
using the Geographic Information Systems software QGIS version 
3.16.0. 

3. Results 

Fig. 2 visually summarizes the co-occurrence of CHR’s 3 health 
outcomes and 13 health risk factors through a correlogram. I trans
formed all ecological factors such that greater values indicate poorer 
conditions. Darker colors indicate higher correlations and only coeffi
cient values with p-values less than 0.01 are shown. With the exception 
of air and water quality and access to clinical care, the plot broadly 
shows strong statistically significant correlations amongst the ecological 
risk factors. There is also strong co-occurrence between the three health 
outcomes: correlation values of − 0.87, 0.68 and − 0.71 for mortality and 
overall health, mortality and diabetes prevalence, and diabetes preva
lence and overall health, respectively. 

An alternative approach to measuring co-occurrence is to examine 
how groups of variables hang together. Fig. 3a displays the locations of 
the 8 clusters produced through a geodemographic classification using 
CHR’s 13 health risk factors and basic demographic characteristics. The 
clusters are labelled according to their most distinguishing features (see 
Appendix Table S2 for cluster mean values of the characteristics used in 
the classification and Appendix Table S3 for cluster descriptions). Fig. 3b 
through 3d map the three health outcomes. A few important findings 

emerge from the classification. First, separation is largely based on the 
interactions between a county’s health risk factors and its racial and 
ethnic composition and rurality. That is, it is not just the variation in 
how health risk factors co-occur that differentiates counties, but how 
this co-occurrence interacts with a county’s racial and ethnic composi
tion. Furthermore, counties are not universally categorized into health 
enhancing or diminishing classes, but are separated by groups of char
acteristics that often covary in opposite directions. For example, the 
analysis identified a group of racially/ethnically diverse urban counties 
with positive health behaviors but poor physical environments. County 
characteristics may even point in opposite directions within each broad 
domain, such as low clinical care access, but high clinical care quality in 
urban, diverse counties. Second, the classes spatially cluster, and 
geographically align with the spatial patterning of the health outcomes. 
For example, Fig. 3a shows the strong spatial clustering of high black 
population, negative health factor counties in the South. This cluster 
visually aligns with the cluster of high mortality, high diabetes, and poor 
overall health counties shown in Fig. 3b–d. Running a geodemographic 
classification of the three health outcomes yielded an optimal cluster 
size k = 3, with the three classifications reflecting high, mid and low 
values across the three outcomes. Because the classification identified 
categories indicating strong correlation across the outcomes, I do not 
report the results. 

Having established strong co-occurrence amongst health outcomes 
and their ecological factors, I present temporal, geographic and migra
tion network correlations in Table 1. The first column of values presents 
Pearson correlation coefficients of health outcomes and health factors 
over an approximately 5-year period (see Appendix Table S1 for specific 
years). I find nearly all correlations are greater than 0.50. Moreover, not 
only do individual determinants correlate over time, but also their co- 
occurrence. Table 2 shows the percent of counties by geodemographic 
cluster type in two separate time periods (See Appendix Table S3 for 
crosswalk between cluster number and distinguishing characteristics). 
The diagonal of this transition matrix, which represents the percent of 
counties classified in the same cluster type in both years, shows that the 
significant majority of counties are grouped together based on their 
health risk factors across time. 

The rest of Table 1 shows correlations of health and their ecological 
risk factors organized by CHR’s four umbrella categories across spatial, 
where spatial is represented as counties sharing the same borders or 
vertices, migration network, where network ties are based on counties 
connected via migration flows, and migration ties inversely weighted by 
distance. For all network structures, I calculated the global Moran’s I for 
two time periods. Counties exhibit greater correlation across geographic 
than network pathways for all determinants and health outcomes. 
However, the correlations are generally high for both, ranging from 0.18 
to 0.66 and 0.16 to 0.49 for geographic and migration network clus
tering, respectively, and are similar across time. The correlations for the 
combined network generally lie somewhere in between the strictly 
spatial and migration based correlations. 

Having established that health outcomes and their ecological risk 
factors cluster across temporal, geographic and network pathways, I 
model the consequences of this clustering on county health. Specifically, 
I examine the average association between a county’s health and the 
health outcomes and their risk factors in that county’s temporal, spatial 
and network neighbors. Results from a series of temporal, spatial and 
network lag regression models are presented in Tables 3–5. These 
models estimate three effects on health: (1) the temporal, spatial, 
network and combined spatial and network lag of health; (2) the direct 
effects of a county’s ecological factors; and (3) the indirect or lag effects 
of health risk factors for a county’s temporal, spatial and network 
neighbors. The temporal lag of health is a county’s health measured at a 
prior time period. The spatial and network lag of health represent the 
average health levels in a county’s geographically adjacent neighbors 
and migrant sending counties, respectively. The direct effect measures 
the association between a county’s current ecological risk factors and its 

Fig. 2. Correlogram of health outcomes and ecological factors. Pearson corre
lation values statistically significant at the p < 0.01 level are shown. Abbrevi
ations: health: overall health; access: access to clinical care; alc: alcohol and 
drug use; emp: unemployment rate; mort: premature mortality rate; tobacco: 
tobacco use; diabp: diabetes prevalence; diet: diet and exercise; healthq: quality 
of clinical care; safety: community safety; educ: education; sex: sexual activity; 
income: poverty and income; awqual: air and water quality; support: family and 
social support; housing: housing and transit. Appendix table S1 provides de
scriptions of each variable. 
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health outcomes. The risk factor indirect or lag effects are translated into 
how average changes in a risk factor in dependent counties are associ
ated with health in the focal county. In the case of the spatial and 
network models, dependence is based on geographic adjacency and 
migrant sending, respectively. In the case of the temporal model, 
dependence is based on the county’s ecological risk factors measured at 
a prior time period. 

Because the primary research objective is to examine diffusion, the 
tables provide results for the lag effects, with the direct effects provided 
in Appendix Tables S4-S6. Several key findings emerge. First, county 
overall health, mortality, and diabetes prevalence are strongly associ
ated with their temporal, spatial and network health lags. For example, a 
one-unit increase in the mortality rate in a county’s prior period, a 
county’s geographically adjacent neighbors, and a county’s migration 
connected communities is associated with a 0.61, 0.31, and 0.55 unit 
increase in a county’s own mortality rate, respectively. When combining 
geographic distance and migration flows, the association (0.34) falls in 
between the strictly spatial and network lags. 

Second, housing and transit quality, alcohol and drug use, family and 
social support, and diet and exercise are statistically significant across 
nearly all specifications. In other words, the lags of these contextual 
features, whether lagged temporally, spatially or across migrant 
network pathways, are associated with all health outcomes. Third, the 
lag effects of the other ecological factors vary across health outcome and 
clustering type. For example, all health outcomes are associated with 
temporally lagged smoking and tobacco use, but not with the spatial or 

network lagged equivalents. Sexual activity is associated with diabetes 
prevalence across all lag specifications, but has no association with 
overall health and mortality. Fourth, similar to the correlations pre
sented in Table 1, the coefficient sizes for the combined spatial and 
migration network model generally fall somewhere in between the co
efficients for the strictly spatial and migration network models. How
ever, in many cases, the coefficients are closer in magnitude to the 
spatial coefficients, indicating a greater influence of spatial proximity 
relative to migrant connectivity. For example, the combined spatial and 
migrant overall lag of 0.57 is closer in size to the purely spatial lag (0.46) 
than the strictly migrant network lag (0.88). This pattern is true for the 
mortality rate and diabetes prevalence lags. 

4. Discussion 

Several theoretical frameworks have previously established the 
clustering of health outcomes and their ecological risk factors (Kolak 
et al., 2020; Matthews and Yang, 2013; Singer, 1996). A major contri
bution of this study is to show how these separate yet interrelated 
frameworks can be expanded by integrating other forms of health 
clustering and embeddedness. Syndemic theory emphasizes the inter
action between multiple health problems, often biologically, with each 
other and the sociocultural, economic, and physical environment. As 
Tsai et al. (2017 pp. 1) observed, “although the theory of syndemics is 
principally a theory about population health, the past two decades’ 
worth of quantitative literature motivated by the theory has generally 

Fig. 3. Maps of U.S. county health outcomes and the geodemographic classification of health risk factors. The geodemographic classification of county demographics 
and ecological risk factors of health is based on the 2018 Community Health Rankings and 2011–2015 American Community Survey (SE: Social and Economic, which 
combines Education, Employment, Income, Family & Social Support, and Community safety domains, PE: Physical Environment, which combines Air & Water 
Quality and Housing & Transit domains, HB: Health Behaviors, which combines Tobacco use, Diet & Exercise, Alcohol & Drug Use, and Sexual Activity domains, CC: 
Clinical Care, which combines Access to Care and Quality of Care domains. For a full description of each domain, see Appendix Table S1). The ordering of the legend 
labels is based on alphabetical ordering. 
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focused on studying individuals rather than populations—and conse
quently has had very little to say about population health.” This study 
addresses this gap by finding support for syndemic theory at the 
ecological level. Moreover, whereas prior work has primarily docu
mented the interactions between diseases, this study demonstrates that 
co-occurrence also applies to the community-level factors theorized to 
influence health. This finding melds syndemic theory with the SDH 
framework by demonstrating that co-occurrence is self-reinforcing in 
that multiple ecological health risk factors may interactively work in 
concert to diminish or enhance community health. Consequently, tar
geting a single risk factor may prove to be ineffective because of other 
determinants collectively impacting local health. However, it is not 
simply the case that counties can be categorized into those that have 
health enhancing or health diminishing factors; instead, counties are 
grouped together based on distinct packages of ecological risk factors, 

some enhancing and others diminishing. In this case, it is not just 
independently targeting all 13 of CHR’s health factors that is most 
efficient, but a distinct set of factors depending on the community. 

The study’s findings also expand the syndemic and traditional SDH 
frameworks by demonstrating that co-occurrence and the influence of 
risk factors is not a strictly internal or within community process. The 
study demonstrates that health outcomes and ecological risk factors also 
cluster between counties. This study highlights the spatial dimensions of 
co-occurrence, finding high levels of spatial autocorrelation for all 
health outcomes and risk factors across two time periods. Moreover, the 
study demonstrates that this clustering has consequences on county 
health and well-being. This observation is not new, as evidenced by the 
growing literature demonstrating the spatial dependency of health 
outcomes (Arcaya et al., 2012; Matthews and Yang, 2013). But this 
study’s findings contributes to this literature by demonstrating that 
clustering and its influence extend beyond a county’s geographic 
network. Specifically, I find that counties both near and far that are 
connected via migration flows share similar health factors and out
comes. And a county’s health factors and outcomes diffuse across these 
migration-based pathways. In other words, a county’s health is associ
ated with the average levels of health and risk factors in its migration 
network. This finding is predicted by the established literature on social 
networks (Christakis and Fowler, 2009). However, rather than relying 
on individuals as nodes, which is the tradition in this literature, I 
demonstrate that social network ties have consequences for ecological 
units and their population-level health. 

I also find evidence of strong temporal clustering: current health 
levels are strongly associated with prior health levels. Moreover, the 
self-reinforcing structures uncovered across the co-occurrence, spatial 
and network dimensions also persist over time. A county tends to remain 
in the same geodemographic classifications over a 5-year period. The 
magnitude of spatial and network clustering changes little over time. 
These results indicate that health inequality perseveres partly because 
communities are embedded in clustered networks that stubbornly 
endure. 

The study does not attempt to rank sources of clustering or answer 

Table 1 
Levels of temporal, spatial and network clustering of county health outcomes and their risk factors.   

Temporal Spatial Network Spatial + Network 

Past Current Past Current Past Current 

Health Factors 
Health Behaviors 
Diet & Exercise 0.83 0.54 0.55 0.41 0.41 0.52 0.53 
Tobacco Use 0.58 0.35 0.64 0.27 0.47 0.34 0.61 
Alcohol & Drug Use 0.57 0.33 0.51 0.24 0.39 0.32 0.51 
Sexual Activity 0.91 0.50 0.46 0.32 0.30 0.43 0.39 
Clinical Care 
Access to Clinical Care 0.95 0.20 0.18 0.18 0.16 0.19 0.17 
Quality of Clinical Care 0.85 0.51 0.50 0.30 0.29 0.43 0.41 
Social and Economic Factors 
Education 0.81 0.42 0.37 0.30 0.24 0.38 0.32 
Employment 0.74 0.66 0.61 0.40 0.34 0.57 0.51 
Income 0.93 0.55 0.56 0.34 0.34 0.46 0.47 
Family and Social Support 0.92 0.52 0.51 0.29 0.28 0.40 0.39 
Community Safety 0.85 0.38 0.34 0.25 0.21 0.33 0.28 
Physical Environment 
Air & Water Quality 0.14 0.50 0.51 0.36 0.27 0.49 0.42 
Housing & Transit 0.91 0.63 0.62 0.37 0.37 0.51 0.52 
Health Outcomes 
Overall Health 0.87 0.61 0.66 0.44 0.49 0.57 0.62 
Premature Mortality Rate 0.89 0.57 0.55 0.39 0.38 0.51 0.51 
Diabetes Prevalence 0.87 0.65 0.65 0.48 0.49 0.61 0.63 

Temporal clustering is measured using Pearson’s correlation. Spatial and Network clustering are measured using Moran’s I. Spatial + Network combines migrant and 
geographic connectivity weight matrices. Past and current variables are measured by the 2015 and 2018 CHR, respectively. The overall health index standardizes and 
combines the potential life lost before age 75 per 100,000 population, the percentage of adults reporting fair or poor health, average number of physically unhealthy 
days reported in past 30 days, average number of mentally unhealthy days reported in past 30 days, and percentage of live births with low birthweight. See Appendix 
Table S1 for years represented in past and current. 

Table 2 
Transition matrix of county geodemographic classes based on CHR’s 13 
ecological health risk factors and demographic characteristics.    

Current 

1 2 3 4 5 6 7 8 N 

Past 1 74 2 4 4 0 2 2 12 560 
2 27 67 0 6 0 0 0 0 674 
3 1 0 92 6 0 0 0 0 239 
4 3 20 7 68 0 1 1 0 738 
5 5 0 0 0 95 0 0 0 19 
6 7 27 0 0 0 63 3 0 718 
7 1 0 0 16 0 0 83 0 130 
8 3 0 0 0 0 0 0 97 30 

Note: Values represent percent of counties by cluster type across 2015 (past) and 
2018 (current) CHR geodemographic classes. Geodemographic classes were 
constructed using the 13 CHR domains, educational attainment (percent without 
a high school degree and percent with a college degree), race/ethnicity (percent 
American Indian, Asian, white, black, and Hispanic), age composition (percent 
below 18 years old between 25 and 34 years old and 65 years old and over) and 
percent rural. See Appendix Table S1 for years represented in past and current 
and Appendix Table S3 for cluster descriptions. 
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whether geography matters more than migration. Rather the study 
demonstrates that clustering exists in various domains, and either 
examining this clustering separately or ignoring it completely un
derestimates a community’s disease burden. The study also does not 
directly speak to health clustering at lower geographic scales such as the 
neighborhood level. Future research applying this study’s analytic 
framework at the local or neighborhood level can better inform local 
public health interventions that target micro-level responses. 

The study’s reliance on multiple data sources is a strength in that it 
allows for the inclusion of a wide set of ecological health risk factors. 
However, the CHR data draw from over a dozen sources, which have 
varying degrees of reliability and vintages. For example, mortality data, 
which are reported almost 100% of the time, are extremely reliable as 
counts of death, while other measures (e.g., excessive drinking) are 
missing for some counties, and still other measures (e.g., air quality and 
obesity rates) are based on modeling methods. To obtain stable county- 

level estimates, data from multiple years were combined, meaning that 
county estimates may not be representative of the current outcome 
prevalence within a county. Future work using updated data that are 
relatively consistent across datasets is needed in order to test the 
robustness of the study’s findings. This study is subject to the limitations 
of the secondary data sets used, including sampling variability and 
measurement error. However, these data came from large, well- 
validated surveys, and these limitations have negligible impacts on the 
study results. 

The study cannot make causal claims regarding the pathways con
necting the health of a county and the health and ecological risk factors 
of its spatially adjacent and migration-connected counties. The associ
ation between a county’s health and the health and ecological risk fac
tors in migration-connected counties may be due to regional economic, 
legal, political, and historic processes that govern both migration flows 
and health outcomes. These pathways are not tested in the current study. 
The study’s objective is to descriptively establish clustering at different 
levels across various domains without speaking to neither the causes of 
this clustering nor its causal impact on health. Future research that 
uncover macro-level explanations will help ensure that the conceptual 

Table 3 
The association between temporal, spatial and migration network lags and 
county overall health from Spatial Durbin regression models.   

Temporal Spatial Network Spatial 
+

Network 

Overall health lag 0.40*** 0.46*** 0.88*** 0.57** 
(0.01) (0.02) (0.03) (0.02) 

CHR Risk Factors lags 
Diet & Exercise 0.10*** − 0.11* − 0.84* − 0.13* 

(0.02) (0.05) (0.42) (0.06) 
Tobacco Use 0.02** 0.08** 0.15 0.07* 

(0.01) (0.03) (0.16) (0.03) 
Alcohol & Drug Use − 0.03** − 0.17*** − 0.32 -0.11*** 

(0.01) (0.03) (0.18) (0.03) 
Sexual Activity 0.01 − 0.04 0.17 − 0.03 

(0.02) (0.03) (0.25) (0.04) 
Access to Clinical Care 0.06 − 0.001 − 0.04 0.02 

(0.03) (0.04) (0.29) (0.05) 
Quality of Clinical Care 0.003 0.03 0.52* 0.11** 

(0.02) (0.03) (0.27) (0.04) 
Education 0.02 0.01 − 0.23 − 0.05 

(0.01) (0.03) (0.26) (0.04) 
Unemployment 0.03*** 0.01 − 0.03 − 0.02 

(0.01) (0.02) (0.20) (0.03) 
Income 0.01 − 0.01 − 0.39 − 0.03 

(0.02) (0.03) (0.26) (0.04) 
Family & Social Support 0.01* 0.02* 0.35* 0.12* 

(0.02) (0.04) (0.37) (0.06) 
Community Safety − 0.03 0.10** 0.41 0.12** 

(0.02) (0.03) (0.22) (0.04) 
Air & Water Quality 0.01 − 0.01 − 0.003 0.003 

(0.01) (0.03) (0.18) (0.03) 
Housing & Transit 0.04 0.24*** 1.59*** 0.32*** 

(0.03) (0.05) (0.50) (0.06) 
AIC 1715.90 1903.50 1743.60 1827.90 
BIC 1921.36 2108.92 1949.02 2033.32 

Coefficients represent indirect effects estimated from Spatial Durbin regression 
models. The dependent variable is overall health based on 2018 CHR data. The 
overall health index standardizes and combines the potential life lost before age 
75 per 100,000 population, the percentage of adults reporting fair or poor 
health, average number of physically unhealthy days reported in past 30 days, 
average number of mentally unhealthy days reported in past 30 days, and per
centage of live births with low birthweight. The overall health lag measures the 
influence of overall health measured at a prior time period based on 2015 CHR 
data (temporal), a county’s geographically adjacent neighbors (spatial) or a 
county’s migrant sending (network) counties based on 2018 CHR data. Tem
poral risk factor lags measure the influence of a county’s characteristics 
measured at a previous time period based on 2015 CHR data. Spatial risk factor 
lags measure the influence of the average characteristics of county’s 
geographically adjacent neighbors based on 2018 CHR data. Network risk factor 
lags measure the influence of the average characteristics of a county’s migrant 
sending counties based on 2018 CHR data. Spatial + Network combines migrant 
and geographic connectivity. Standard errors are in parentheses. 
***p < 0.001; **p < 0.01; *p < 0.05. 

Table 4 
The association between temporal, spatial and migration network lags and 
county premature mortality rates from Spatial Durbin regression models.   

Temporal Spatial Network Spatial +
Network 

Mortality rate lag 0.61*** 0.31*** 0.55*** 0.34*** 
(0.02) (0.02) (0.04) (0.03) 

CHR Risk Factors lags 
Diet & Exercise − 0.07* 0.05 0.09 − 0.03 

(0.03) (0.06) (0.15) (0.07) 
Tobacco Use − 0.07*** 0.06 0.04 0.02 

(0.01) (0.03) (0.07) (0.03) 
Alcohol & Drug Use 0.04** 0.16*** 0.21** 0.12*** 

(0.01) (0.03) (0.07) (0.03) 
Sexual Activity − 0.04 0.02 − 0.14 − 0.01 

(0.02) (0.04) (0.10) (0.05) 
Access to Clinical Care 0.05 − 0.03 0.21 0.004 

(0.05) (0.05) (0.11) (0.05) 
Quality of Clinical Care − 0.05* − 0.05 − 0.20* − 0.08 

(0.02) (0.04) (0.10) (0.04) 
Education 0.01 0.05 0.17 0.09* 

(0.02) (0.04) (0.10) (0.04) 
Unemployment − 0.05*** 0.03 0.22** 0.11** 

(0.01) (0.03) (0.08) (0.04) 
Income 0.06* − 0.12** − 0.15 -0.10* 

(0.02) (0.04) (0.10) (0.04) 
Family & Social Support − 0.02* 0.09 − 0.05* − 0.01 

(0.03) (0.05) (0.14) (0.05) 
Community Safety 0.22*** − 0.08* − 0.07 − 0.08* 

(0.02) (0.04) (0.08) (0.04) 
Air & Water Quality 0.04** − 0.06 − 0.05 − 0.04 

(0.01) (0.03) (0.07) (0.03) 
Housing & Transit − 0.14*** − 0.37*** − 0.74*** − 0.38*** 

(0.03) (0.05) (0.14) (0.06) 
AIC 3512.50 4493.00 4496.80 4520.30 
BIC 3717.97 4698.37 4702.21 4725.70 

Coefficients represent indirect effects estimated from Spatial Durbin regression 
models. The dependent variable is the premature mortality rate based on 2018 
CHR data. The mortality rate lag measures the influence of mortality measured 
at a prior time period based on 2015 CHR data (temporal), a county’s 
geographically adjacent neighbors (spatial) or a county’s migrant sending 
(network) counties based on 2018 CHR data. Temporal risk factor lags measure 
the influence of a county’s characteristics measured at a previous time period 
based on 2015 CHR data. Spatial risk factor lags measure the influence of the 
average characteristics of county’s geographically adjacent neighbors based on 
2018 CHR data. Network risk factor lags measure the influence of the average 
characteristics of a county’s migrant sending counties based on 2018 CHR data. 
Spatial + Network combines migrant and geographic connectivity. Standard 
errors are in parentheses. 
***p < 0.001; **p < 0.01; *p < 0.05. 
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framework presented in this study can be used to address underlying 
causes. 

The study focuses on one type of network ecological tie – migration – 
but other phenomena tying communities together may also exhibit 
clustering including work commuting, activity spaces, and economic 
development (Cagney et al., 2020), and these various linkages may have 
different consequences on a community’s health. Future work exam
ining the clustering and consequences of these different networks will 
help expand and generalize this study’s framework. The study’s findings 
also do not apply to counties in Alaska and Hawaii as they were excluded 
from the analyses due to methodological reasons related to the con
struction of the spatial and migration network matrices. 

Despite these limitations, the study’s findings as they are substanti
ated with more recent data and at multiple scales, could help to inform 
national, state and county public health responses that look at groups of 
health determinants and outcomes concurrently. The overarching 
framework of this research is that ecological health and its risk factors 
are dependent on multiple forms of embeddedness, and an under
standing of the various dimensions by which health is clustered repre
sents a tool for explaining patterns of persistent poor health and 

developing novel approaches to addressing health inequalities. The 
study offers potential ways to expand current approaches that rely 
largely on a single theoretical framework or method of intervention. A 
syndemic-oriented intervention defines the population in question, 
identifies the conditions that create and sustain health in that popula
tion, examines why those conditions might differ among groups and 
determines how those conditions might be addressed in a comprehen
sive manner. For example, an intervention targeting chronic alco
holism/HIV infection syndemic includes the simultaneous targeting of 
drinking patterns among individuals living with HIV infection, focusing 
on drinking establishments as sites of prevention education, the close 
monitoring of dually diagnosed individuals to ensure appropriate 
treatment, and the provision of training that assists individuals in 
handling cognitive and motor impairments (Singer et al., 2012). An SDH 
approach focuses on the ecological context potentially influencing poor 
health outcomes, such as housing, school characteristics, aspects of the 
built environment and crime and safety. The syndemic and SDH ap
proaches focus on the co-occurrence of health and its risk factors, but 
this study’s findings illuminate other dimensions through which health 
outcomes and their risk factors are clustered. Specifically, a syndemic or 
SDH based intervention in a community may incorporate that com
munity’s larger spatial and network community, which can be done 
numerous ways. For example, spatial and network clusters can provide 
appropriate comparison groups that health agencies can use for bench
marking as a forum for learning exchange. Local health departments 
often look to metrics such as the CHR as a means to evaluate their 
performance nationally or in relation to their same-state peers. How
ever, comparisons of different populations across the nation or within a 
state may obscure net gains being made by health departments serving 
more disadvantaged populations. The framework established in this 
study provides a mechanism to create comparison groups, through 
which the lowest performers within a cluster can gain valuable infor
mation on how to improve their performance by implementing similar 
interventions as the highest performers in the cluster. Embedded 
counties can also collaborate on interventions, sharing resources to 
mitigate risk factors influencing health in their clustered communities. 

Social network based interventions traditionally focus on individual 
social ties. For example, obesity interventions use network ties estab
lished via online networks or mobile apps to encourage physical activity 
and promote other health behaviors associated with proper weight loss 
(Jane et al., 2018). This study expands the traditional social network 
approach by demonstrating the importance of networks at the commu
nity level, exposure to health promoting or impeding factors in spatially 
embedded communities, and the interaction between multiple health 
outcomes and risk factors that may spread across a community network. 
That is, it is not just the network of individuals and their characteristics 
that a person is exposed to that may increase or minimize unhealthy 
behaviors, but also the network of communities and their ecological risk 
factors that a person moves through, whether via residential migration 
or other forms of spatial mobility. 

Spatial diffusion based interventions focus on selectively targeting 
hotspot areas. That is, similar to crime interventions that, for example, 
distribute policing to specific geographic clusters exhibiting high crime 
rates, public health interventions will target geographically contiguous 
areas showing significant poor health. The rationale for this approach is 
that state and local public health officials can focus limited resources in 
areas with concentrated health disadvantages. This study expands this 
approach by demonstrating that clustering between communities can 
also occur across networks connecting distal counties. In this case, 
practitioners from both geographically adjacent and network connected 
communities can collaborate to share and deploy resources across their 
respective communities. Syndemic, SDH, social network and spatial 
diffusion approaches often neglect temporal aspects of health clustering. 
Measuring temporal clustering provides agencies predictive models to 
understand the health, social and economic trajectories of their pop
ulations, and to use these models to develop strategies that break the 

Table 5 
The association between temporal, spatial and migration network lags and 
county diabetes prevalence from Spatial Durbin regression models.   

Temporal Spatial Network Spatial +
Network 

Diabetes prevalence lag 0.61*** 0.38*** 0.65*** 0.44*** 
(0.02) (0.02) (0.03) (0.02) 

CHR Risk Factors lags 
Diet & Exercise − 0.0002 − 0.01*** − 0.01** − 0.01*** 

(0.001) (0.002) (0.004) (0.002) 
Tobacco Use − 0.001* − 0.001 − 0.0003 − 0.002 

(0.0003) (0.001) (0.002) (0.001) 
Alcohol & Drug Use 0.001* 0.004*** − 0.01** 0.004*** 

(0.0003) (0.001) (0.002) (0.001) 
Sexual Activity − 0.001* − 0.003* − 0.02*** − 0.005*** 

(0.001) (0.001) (0.003) (0.001) 
Access to Clinical Care − 0.002 − 0.003* − 0.003 − 0.002 

(0.001) (0.001) (0.004) (0.001) 
Quality of Clinical Care − 0.0004 0.004*** 0.01*** 0.01*** 

(0.001) (0.001) (0.003) (0.001) 
Education − 0.001 0.001 0.01** 0.004** 

(0.0005) (0.001) (0.003) (0.001) 
Unemployment − 0.001 − 0.00003 − 0.001 0.001 

(0.0003) (0.001) (0.002) (0.001) 
Income 0.0003 − 0.00003 0.001 − 0.001 

(0.001) (0.001) (0.003) (0.001) 
Family & Social 

Support 
− 0.001* − 0.001* − 0.0005 − 0.001 
(0.001) (0.001) (0.004) (0.002) 

Community Safety 0.0005 0.001 − 0.002 − 0.001 
(0.001) (0.001) (0.003) (0.001) 

Air & Water Quality − 0.0004 − 0.001 0.002 0.001 
(0.0003) (0.001) (0.002) (0.001) 

Housing & Transit − 0.002* − 0.01*** − 0.02*** − 0.01*** 
(0.001) (0.001) (0.004) (0.002) 

AIC − 19196.20 − 18518.21 − 18541.30 − 18532.11 
BIC − 18990.56 − 18312.46 − 18335.78 − 18326.22 

Coefficients represent indirect effects estimated from Spatial Durbin regression 
models. The dependent variable is diabetes prevalence based on 2018 CHR data. 
The diabetes prevalence lag measures the influence of diabetes prevalence 
measured at a prior time period based on 2015 CHR data (temporal), a county’s 
geographically adjacent neighbors (spatial) or a county’s migrant sending 
(network) counties based on 2018 CHR data. Temporal risk factor lags measure 
the influence of a county’s characteristics measured at a previous time period 
based on 2015 CHR data. Spatial risk factor lags measure the influence of the 
average characteristics of county’s geographically adjacent neighbors based on 
2018 CHR data. Network risk factor lags measure the influence of the average 
characteristics of a county’s migrant sending counties based on 2018 CHR data. 
Spatial + Network combines migrant and geographic connectivity. Standard 
errors are in parentheses. 
***p < 0.001; **p < 0.01; *p < 0.05. 
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chains that bind health problems across time. 
How to best address rising health inequality is a complex question 

given the local social and economic context and the multiple strategies 
that can be implemented. Much of the discussion surrounding the causes 
and consequences of increasing mortality and decreasing life expectancy 
in the United States has focused on issues related to medical care and 
individual behaviors and choices. Although individual factors are an 
important part of the story, the macro-level health trends require macro- 
level explanations (Zajacova and Montez, 2017). This study’s results 
suggest that scholars and practitioners should move beyond the evalu
ation and targeting of single outcomes, determinants and communities. 
Health and its ecological risk factors are clustered phenomena, and in 
order to fully address population health inequality, we must break down 
the self-reinforcing clustered networks that allow it to stubbornly 
persist. 
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